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Abstract

The WIMP1 is probably the most popular dark matter particle candi-
date presented in the standard literature[?],[?]. The origin of their pres-
ence in the present Universe is explained by the process of freezout from
the Local Thermal Equlibrium at the temperature scale T ∼= mX/20[?],
where mX stands for the WIMP’s mass. Our main target is to explore
possibility of the dark matter being made of decoupled particle species.
We show that the estimation of the order of magnitude for the cross sec-
tions keeping these particles in the local thermal equilibrium is on the
scale of the Weak interactions.

1 Main Idea

The main idea is very simple. Let us consider the traditional distribution func-
tion of the particles in the Local Thermal Equilibrium (LTE) with the energy
ε, mass m and chemical potential µ:

f(ε) =
1

e
ε−µ
T ± 1

, (1)

where upper sign holds for fermions and lower sign for bosons. Next, assume
the density of states ϕ(ε) of these particles with g internal degrees of freedom
in the volume V in the isotropic case[?]:

ϕ(ε) =
gV

2π2
ε
√
ε2 −m2, (2)

where we consider ε2 = p2 +m2.

Now, let us to consider the decoupling process of the nonrelativistic particle
species with the mass much greater than the decoupling temperature, m� TD.
We imagine the decoupling process as such abortion of the interactions of the
considered particle species during which, the distribution function remains the
same2. The distribution function of our hypotetic cold dark matter particles
with the nonzero value of the chemical potential, marked with the Υ , after the
decoupling reads:

fΥ (p) ∼=
1

e
p2

2mTΥ
+m−µ

TΥ ± 1
. (3)

1Weakly Interacting Massive Particle.
2Based on our opinion, this is the main difference between the idea of decoupling and

freezout.
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From this point we start to explicitly distinguish between the temperature of
the decoupled DM particles TΥ and the temperature T of the particle species
remaining it the LTE. When we consider that the momentum of the Υ particles
scales with the scaling parameter a as p ∝ a−1, we can easily compute the scaling
of the temperature and the chemical potential for the considered decoupled DM
particles[?]:

TΥ =
a2
D

a2
TD µ = m−

(aD
a

)2

(m− µD),

=
T 2

TD
= m−

(
T

TD

)2

(m− µD). (4)

The index D marks the value of the considered feature at the time of the de-
coupling. We have also used the fact that the scaling parameter a can be
expressed throuht the photon temperature as a0

a = T
T0

, and that the decoupling
temperature of the Υ particles is equal to the temperature of the other species
remaining in the LTE for the very last time. In fact, the introduced time de-
pendence of the chemical potential keeps the value of the second fraction in
the exponent in the eq.: (3) equal to its value at the decoupling temperature:
(m−µD)/TD = (m−µ)/TΥ . For further purposes we use the following notation:

ζ ≡ m

TD
, ξ ≡ m− µD

TD
. (5)

Next, let us calculate the particle density and the energy density for the decou-
pled Υ particles using relations (2), (3) and integrals Ia(±, ξ):

I±(a, ξ) =

∫ ∞
0

xadx

ex+ξ ± 1
(6)

nΥ =
1

V

∫ ∞
0

dpϕ(p)fΥ (p) =
gΥ ζ

3
2

√
2π2

I±(1/2, ξ)T 3 (7)

ρΥ =
1

V

∫ ∞
0

dpεϕ(p)fΥ (p) =

(
ζ +

I±(3/2, ξ)

I±(1/2, ξ)

(
T

TD

)2
)
TDnΥ (8)

1.1 Consistency with the ΛCDM Cosmology

Assuming dark matter being made of the nonrelativistic decoupled particle
species and considering its contribution to the energy content of the Universe
at the early times T . 1TeV , we can obtain condition on the allowed values for
ξ.

Indroducing individual contributions to the energy density at the early Uni-
verse from the radiation, baryonic matter, nondecoupled dark matter and the
decoupled dark matter particles, we are left with:

ρ = ργ0

(
T

T0

)4

+ (ρm0 − ρΥ0)

(
T

T0

)3

+ ρΥ︸ ︷︷ ︸
ρm

, (9)

We are going to assume, that the whole dark matter content of our observable
Universe is made of decoupled Υ particles. All of the presented calculations
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can be easily generalized in the situations, when ΩΥ < Ωdm. Examining an
eq.(9) together with an eq.(8) we can see that for the Υ particles we count also
the kinetic energy of these particles. However, for the other massive particle
species contributing to the matter content, we count only the rest energy of
these particles. The motivation for this step is following. The contributions
from the kinetic energy of the baryons and alternatively standard, frozen out
dark matter would be small against the energy density of the relativistic species.
However, the contribution from the kinetic energy of the decoupled Υ particles
could be bigger than the energy density of the remaining relativistic particle
species, since it depends on the value of the mass, chemical potential and de-
coupling temperature.

We can also represent this idea graphically. At first we can easily rearrange
eq.(9), using presented equations for the particle density eq.(7) and the energy
density eq.(8) of the decoupled dark matter, in to the form:

ρ

T 4
=

(
(ρm0 − ρΥ0)

T 4
0

δ +
gΥ ζ

5
2

√
2π2

I±(1/2, ξ)

)
x+

gΥ ζ
3
2

√
2π2

I±(3/2, ξ)x−1

︸ ︷︷ ︸
ρm/T 4

+ g∗(T )
π2

30︸ ︷︷ ︸
ργ/T 4

,

(10)
where we use following motation: δ = TD

T0
and x = TD

T .
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Figure 1: Ilustration of the existance
and non-existance of the equality era be-
tween radiation and matter energy den-
sities in the model with the decoupled
Υ dark matter particles, which depends
on the values of ζ and ξ.

For some values of ξ, after the de-
coupling of the Υ particles, the en-
ergy density would be dominated by
the term proportional to (a0/a)

5
(ki-

netic energy density of Υ particles)
and after that by the term prop. to
(a0/a)

3
(rest energy density of the

all matter particles). Since the re-
sults of observations agree with the
ideas of the ΛCDM cosmology, which
determines the value of the photon
temperature at the time of equality
between the matter and radiation:
Teq = Ωm/ΩγT0, we constrict our-
selves on the such values of ξ, which
allow the existence of the radiation
domination era, even after the decou-
pling of the Υ particles: At first, we

start from the condition on the existence of the equality era, ργ(Teq) = ρm(Teq),
which can be rearranged by using eq.(7),(8):(

TD
Teq

)2
gΥ ζ

5
2

√
2π2

I±(1/2, ξ)− TD
Teq

g∗(T0)
π2

30

ΩΥ
Ωm

+
gΥ ζ

3
2

√
2π2

I±(3/2, ξ) = 0 (11)

Constraining condition in the implicit form on the allowed values of ξ can
be easily found as the positive value of the discriminant for the constructed
quadratic equation eq.(11). In addition, requirement that our results have to
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agree with the benchmark model of the ΛCDM Cosmology, the energy density

term in the translated form: ΩΥkin.
(
a0
a

)5
, which comes from the contribution

of the kinetic energy density of Υ particles should be negligible. In such a case,
our condition for the allowed values of ξ and ζ obtains a form:(

g∗(T0)

gΥ

π4

30
√

2

ΩΥ
Ωm

)2

� ζ4I±(3/2, ξ)I±(1/2, ξ) (12)

Realizing that the number on the LHS is just the number from the interval
(1,10), next that ζ � 1 and the form of the integrals I±(a, ξ), eq.(6), we can
assume (and the numerical analysis will prove us right) that the ξ should be
positive number. Numerical analysis shows that the interval for the allowed
values of ξ is actually: ξ & 6. For these values of ξ, we can safely use the
classical limit for the integrals I±(a, ξ), where the difference between the boson
and fermion species is wiped out:

I±(a, ξ) = Γ(a+ 1)e−ξ. (13)

Our constrain in the form of eq.(12) for the allowed values for ξ and ζ obtains
a simple form:

−1.84 + log10

√
g∗(T0)

gΥ

ΩΥ
Ωm

+ 0.22ξ ≥ log10ζ (14)

1.2 Decoupled Cold Dark Matter Antiparticles

Let us consider the particle density of the decoupled Υ antiparticles, assuming
conditions presented in the previous section. Comparing it with the eq.(7) the
only change would be in the sign of the chemical potential. Since we assume that
the total number of the Υ particles and antiparticles remains fixed after their
decouplement, it can be shown[?] that the chemical potential of the Υ antipar-
ticles would be the minus chemical potential for the Υ particles. Considering
this, we obtain:

nῩ = nΥ e
2

(
ξ−ζ

(
TD
T

)2
)

(15)

As we can see their particle density would be suppressed by the factor e

[
2

(
ξ−ζ

(
TD
T

)2
)]

against the particle density of the Υ particles. At the first sight, this fact causes
trouble, because it would mean that the comoving density of the dark matter
antiparticles does not remain constant after the decoupling. It would mean that
even when the Υ particle species decouple, the amount of its antiparticles con-
tinue to decrease.

However, it shows that there is in fact no problem at all. When we as-
sume that the total number of Υ particles and antiparticles is fixed even before
decoupling3, the particle density for the dark matter antiparticles in the LTE
would be described by the eq.(15). Naturally, we must keep on our minds, that
the presented equation remains true only in the case of the homogeneous and
isotropic distributed dark matter in the Universe. Since the homogeneous part

3“Dark matter particle number conservation“
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of the particle density for the antiparticles is exponentially surpressed during the
LTE, we should also account the inhomogeneous corrections. Without the cor-
rections the eq.(15) is incomplete. Considering the presented idea, we conclude
that for the proper examination of the comoving particle density of the decou-
pled Υ antiparticles, we would have to include influence of inhomogeneities.

1.3 Temperature, Particle Density and Mean Velocity for
Decoupled Υ Particles

Once we had ensured that there will be also dominance of the radiation com-
ponent in the evolution of the Universe in the model with the decoupled dark
matter particles, we can neglect the third term in the eq.(11), since the terms
representing contribution from the rest energy density of the Υ particles (first
term) and the contribution from the mentioned energy density of the radiation
component (second term) are dominant. Solving the eq.(11) and using known
value for the Teq = Ωm/ΩγT0 obtained from the ΛCDM Cosmology itself, we
find relation between the decoupling temperature of the Υ particles and their
mass and chemical potential at the time of the decoupling:

TD = 5.18
g∗(T0)

gΥ

ΩΥ
Ωm

eξ

ζ
5
2

(16)

As we can see, the decoupling temperature increases exponentially with the ξ
and decreases with the 5/2 power of ζ. It also linearly increases with the ratio of
the amount of the matter component being created by the decoupled Υ particles
to the whole amount of the matter component. For better illustration, we plot
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Figure 2: Contour plots of the decoupling and present temperatures for the Υ
particles.

the contour plot of TD in the fig.2a4. We also plot the present temperature of
the Υ particles obtained by using eq.4 in the fig.2b. We can immidiatelly notice
that the present temperature of the earlier decoupled Υ particles will be lower

4Restrictions on the plotted regions come from the condition eq.14 and from the maximal
energy per particle being less than the tens of TeV.
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than the temperature of the Υ particles which have decoupled later after the
Big Bang. This effect is caused by the longer time which these earlier decoupled
particles spend outside the Local Thermal Equilibrium.

Using e.g. eq.(7) and eq.(16) we can also easily find the equation for the
particle density at the decoupling temperature:

nΥ (TD) = 0.33g∗(T0)Teq
ΩΥ
Ωm

T 2
D

ζ
(17)

The contour plot for the particle density at the decoupling time is presented
in the fig.3a. Realizing that nΥ (T0) = nΥ (TD) (T0/TD)

3
, we can also easily

construct the contour plot for the present particle density of the Υ particles,
presented in the fig. 3b. Let us assume two different kinds of Υ particles, both
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Figure 3: Contour plots of the decoupling and present particle densities for the
Υ particles.

with the same ζ: ratio of their mass and the decoupling temperature. Once
again, in the fig.3a, we can see that the particle density at the decoupling tem-
perature for the Υ particles which decoupled at the higher temperature scale is
higher than the particle density of the particles which remain in the LTE longer
time and decoupled at the lower temperature scale. On the other hand as we
can see in the fig.3b, the longer period of time which the heavier particles have
spent outside the LTE will reduce their particle density way bellow the particle
density of the lighter particles which would decouple later.

To complete our collection of properties for the considered decoupled Υ dark
matter particle species, we also present their mean velocities at the decoupling
(fig.4a) and present (fig.4b) temperatures. The mean velocity is obtained by
computing:

vΥ =
1

nΥV

∫ ∞
0

dp
p

m
ϕ(p)fΥ (p) =

1.6√
ζ

T

TD
(18)

The basic idea of all of the presented plots in here is to scatch the basic concept
of crucial properties for our considered decoupled particle species.
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Figure 4: Contour plots of the decoupling and present mean velocities for the
Υ particles.

1.4 Estimation of Cross Sections at Decoupling Temper-
ature Scale

The basic idea of the presented estimation of the order of magnitude for the cross
sections of the interactions that keep Υ particles in the contact with the LTE
for the very last time is following: We are going to compare characteristic time
between the collisions τ which keep the Υ particles in the LTE with the Hubble
time tH , which represents the age of the observable Universe at the considered
temperature scale. It should be intuitively clear that in the regime: τ � tH , the
equilbrating interactions are very frequent, whereas when the τ � tH the par-
ticle does not interact at all and remains absolutelly decoupled from the other
species which create the LTE. Considering these two mentioned limit regimes,
we will consider condition for the occurence of the decouplement in the form:
τ(TD) = tH(TD).

At first we will have a look at the Hubble time. Since we are interested
in the Universe where the most important contributions to the energy density
come from the radiation and matter, the Friedmann equation obtains a form:

H2 = H2
0

(
Ωγ

(a0

a

)4

+ Ωm

(a0

a

)3
)
. (19)

Using eq.19 for the calculation of the Hubble time at the temperature of the
decoupling tH(TD) = tD , we are left with:

tD =

∫ aD

0

da

aH0

√
Ωγ
(
a0
a

)4
+ Ωm

(
a0
a

)3
=

2

H0

√
Ωm

(
T0

Teq

) 3
2

(
2

3
+

1

3

(
1 +

Teq
TD

) 3
2

−
(

1 +
Teq
TD

) 1
2

)
(20)
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Now, let us describe the characterictic time between collisions, τ . We un-
derstand it as 1/Collision rate, where the Collision rate ≡ Γ(T ) measures the
number of equilbrating interactions over the time in the system with the temper-
ature T . The collision rate Γ depends on the weighted cross section multiplied by
the relative velocity of the interacting particles 〈σvrel.〉 and also on the particle
density of the target particles ntar.(T ) within the temperature T on which the
equilbrating processes occure. In principle, there could be two different kinds
of equilbrating processes contributing to the Γ. The first one will measure the
contribution from the interactions between the particles Υ and other particles
(relativistic species marked as γ, since the standard nonrelativistic species have
very small particle densities):

ΓγΥ = 〈σγΥ vrelγΥ 〉nγ . (21)

The second term corrensponds to the contribution from the equilbrating pro-
cesses which run mostly between the Υ particles themselves.

ΓΥΥ = 〈σΥΥ vrelΥΥ 〉nΥ . (22)

Considering these two parts of the collision rate, our condition for the occurrence
of the decoupling obtains a form:

ΓγΥ (TD) + ΓΥΥ (TD) =
1

tD(TD)
(23)

If the dark matter is really created by particles then we should obtain the
introduced cross sections from some model of the quantum field theory, de-
scribeing the characterictics of the interactions for these dark matter particles
with other kinds of particles and also with themselves. It may happen that the
difference between the coupling constants which would multiply the correspond-
ing interaction terms for the important equilbrating processes would be several
orders of magnitude. Such a difference between the coupling constants would
lead to the differences in the values of the cross sections describing the pro-
cesses, important for the equalibration of our considered decoupled Υ particles.
We use this idea in the following estimation of the order of magnitude for the
cross sections corresponding to equilbrating processes at the era of Υ decoupling.

At first, we assume that ΓΥΥ � ΓγΥ , which would mean:

〈σΥΥ vrelΥΥ 〉
〈σγΥ vrelγΥ 〉

� nγ
nΥ

. (24)

Realizing that the right hand side of this condition varies from the 103 − 1012

based on the mass and decoupling temperature of our considered Υ particle
species, we assume huge difference in the interactions of Υ particles with the
other particles species and the interactions among themselves. However, if this
assumption is satisfied, we can neglect the first term in the condition for the
Υ decoupling. Now, we estimate the order of magnitude for the cross section
in the form: 〈σΥΥ vrelΥΥ 〉/vrelΥΥ , where the relative velocity for the Υ particles
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can be in our case ξ & 6 easily calculated:

vrelΥΥ =
g2
Υ

nΥ1
nΥ1

m

∫ ∞
0

dp1

2π2
p2

1fΥ (p1)

∫ ∞
0

dp2

2π2
p2

2fΥ (p2)|p1 − p1|

= 2vΥ , (25)

where the vΥ si well known from the eq.18. Putting everything together, we are
left with:

〈σΥΥ vrelΥΥ 〉
vrelΥΥ

=

0.12

(√
Ωγζ

T0

)3
H0

ΩΥ(
TD
Teq

)2
(

2
3 + 1

3

(
1 +

Teq
TD

) 3
2 −

(
1 +

Teq
TD

) 1
2

) (26)
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Figure 5: Properties of the decoupling Υ dark matter particles on the different
temperature scales in the limit: ΓΥΥ � ΓγΥ

Obtained results are plotted in the fig.5a and 5b. The plot presented in the
fig.5a should be read as the answer to the following question: What are the
properties of the particle species Υ , which would decouple on the considered
temperature scale? As we can see, the estimation for the equilbrating cross sec-
tion shows the scale of the Weak interactions for the decoupled particles, which
mass is approx. 10− 100 times larger then the temperature scale at the time of
their decouplement.

Since the contours of the decoupling cross sections are nearly straight lines5,
this statement remains true for the most of the considered temperature scales.
We can connect this new piece of information together with the fig.3a which
presents the particle density at the decoupling temperature. Let us consider
some temperature scale. As we can see from the fig.5a on this scale would de-
couple particle species with higher mass and higher cross section, or particles
with lower mass and lower cross section. Examining the fig.3a and the fig.4a
we see that the heavier particles would have lower particle density and lower

5The small bend is caused by the starting matter dominance at the temperature scale
T . 1eV .
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relative velocity and viceverse, the lighter particles would have higher particle
density and higher relative velocity instead.

The obtained result could be also obtained by absolutelly different idea.
Because the important role in our cross section estimation plays the particle
density of the dm particles and not the distribution function itself, the result
could be obtained also by taking the present particle density of the dm particles
(obtained from the known energy density for the dark matter), which will of
course depend from the mass of dm particles, then express it at the tempera-
ture when the particles left from the LTE. We purposely do not specify the way
how do these particles left the LTE, since all we have used is the particle density
and not the distribution function. The results of the estimation for the cross
section using these ideas would be the same as the one presented in the fig.5a At
the end, if we would use the result from the solution of the Boltzmann equation
for the freezout of the dark matter particles: ζ ' 20, we can see that we would
obtain just the Weak interaction scale from the cross section estimation well
known from the Wimp miracle[?].

Next, we are going to examine the opposite limit, ΓΥΥ � ΓγΥ in which we
assume:

〈σγΥ vrelγΥ 〉
〈σΥΥ vrelΥΥ 〉

� nΥ
nγ
. (27)

The assumption which we use in this case is bassically opposite to one which we
presented in the previous paragraph, working in the regime, where was satisfied
condition eq.12. Realizing that the relative velocity vrel.Υγ ∼= 1, (in the units
where c = 1), the final result is:

〈σγΥ 〉 =

1.05
g∗(TD)

H0Ω
1
2
m

(T0Teq)
3
2(

TD
Teq

)3
(

2
3 + 1

3

(
1 +

Teq
TD

) 3
2 −

(
1 +

Teq
TD

) 1
2

) (28)
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Figure 6: Properties of the decoupling Υ dark matter particles on the different
temperature scales in the limit: ΓΥΥ � ΓγΥ
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Our obtained results are ploted in the fig.6a and fig.6b. As we can see from
the eq.27 and from the fig.6a the decoupling temperature scale is in this con-
sidered limit not dependent on the mass of the dm particles. As mentioned
earlier the fig.6a can be used not just for the decoupled particles, but also for
particle species which simply freezed out from the LTE at the temperature scale
TD,F . However the plot fig.6b shows the estimation for the cross sections at the
decoupling temperature scale for decoupled particles with different values of ζ
and ξ.

As we can see the estimated decoupling cross sections for the Υ particles
which would be kept in the thermal equilibrium mostly by interactions with the
other relativistic particle species would be once again on the scale of the Weak
interactions. Once again the plot in the fig.6a can be also used as the freezout
scale for the dm particles.

It is good to realize, that the estimation for the value of the cross section
at the decoupling temperature in the limit ΓΥΥ � ΓγΥ presented in the fig.6a
remains absolutelly the same even for light, relativistic species dropping out
of the LTE, since the only important quantities are: tH , vrel. and the particle
density of the taget particles: nγ .

1.5 Aknowledgement

Dosiahnuté výsledky pri riešeńı problému asymetrickej tmavej látky s nenulovým
chemickým potenciálom boli dosiahnuté s podporou Ministerstva školstva, vedy
výskumu a športu SR v rámci poskytnutia dotácie v zmysle § 8a zákona č.172/2005
Z. z. o organizácii štátnej podpory výskumu a vývoja a o doplneńı zákona č.
575/2001 Z. z. o organizácii činnosti vlády a organizácii ústrednej štátnej správy
v zneńı neskorš́ıch predpisov v platnom zneńı.
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